Refinement of the Structure of Metastable Phosphonitrilic Chloride, $\left(\mathbf{P N C l}_{2}\right)_{4}$

By Roeli Hazeramp, Tiny Migchelsen and Aafje Vos
Laboratorium voor Algemene Chemie, Anorganische Chemie en Kristalchemie, Rijksuniversiteit, Groningen, The Netherlands

(Received 4 September 1961)

Abstract

The crystal structure of $\left(\mathrm{PNCl}_{2}\right)_{4}$ has been refined by three-dimensional Fourier syntheses. The crystallographically non-equivalent $\mathrm{P}-\mathrm{N}$ bonds in the puckered eight-membered ring have an equal length of $1.57_{0} \AA$, s.d. $0.01 \AA$. The average value for the $\mathrm{P}-\mathrm{Cl}$ bond lengths is $1.989 \AA$, s.d. $0.004 \AA$. The configuration of the molecule is compatible with Craig's or Dewar's theory in which a delocalization of the $p \sim \pi$ and $d-\pi$ electrons is assumed.

Introduction

In an early structure determination of the metastable modification (Lund, Paddock et al., 1960) of $\left(\mathrm{PNCl}_{2}\right)_{4}$ by Ketelaar et al. (1939), the lengths of the P-N bonds in the eight-membered ring were found to be equal within rather large experimental error. However, a theoretical prediction (Craig, 1959) of equal S-N bond lengths in the analogous case of (NSF) $)_{4}$ proved to be incorrect (Wiegers \& Vos, 1961). Therefore it seemed desirable to refine the structure of $\left(\mathrm{PNCl}_{2}\right)_{4}$ by three-dimensional methods in order to obtain more conclusive evidence about the P-N bond lengths in this compound.
In connection with our work on the thiazylhalides, an investigation of some more phosphonitrilic compounds is in progress. A preliminary structure determination of the stable form of $\left(\mathrm{PNCl}_{2}\right)_{4}$ by twodimensional syntheses has already shown that the $\left(\mathrm{PNCl}_{2}\right)_{4}$ molecules in this modification are centrosymmetrical. In addition the crystal structures of $\left(\mathrm{PNCl}_{2}\right)_{6},\left[\mathrm{PN}(\mathrm{OH})_{2}\right]_{4} .2 \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{PN}(\mathrm{OH})(\mathrm{ONa})]_{3}$. $4 \mathrm{H}_{2} \mathrm{O}$ are being investigated. The above structures will be refined by three-dimensional methods.

Experimental

The substance was prepared by the method of Schenk \& Römer, described by Ketelaar (1939). Crystals were obtained from a solution in benzene. For the intensity measurements cylindrical crystals were used; they were made by touching a rotating crystal lightly with filter paper soaked with benzene.

Table 1. Crystallographic data

Ketelaar et al.
Present work
Tetragonal,
space group $P 4_{2} / n$
Two mol. ($\left.\mathrm{PNCl}_{2}\right)_{4}$ per cell

$$
\begin{aligned}
a=b & =10.82 \pm 0.01 \AA \\
c & =5.95 \pm 0.01 \AA
\end{aligned}
$$

$$
\begin{aligned}
& \text { With } \\
& \begin{array}{r}
\lambda\left(\operatorname{Cu} K \alpha_{1}\right)=1.54050 \AA \\
\lambda\left(\operatorname{Cu} K \alpha_{2}\right)=1.54434 \AA \\
a=b=10.844 \pm 0.002 \AA \\
c=5.961 \pm 0.005 \AA
\end{array}
\end{aligned}
$$

The crystallographic data are listed in Table 1.

Accurate cell dimensions were obtained from backreflexion photographs.
The intensities were measured from the following integrated equi-inclination Weissenberg photographs, taken with zirconium-filtered molybdenum radiation.

Crystal	μR	Layer line	
1	$0 \cdot 50$	$0-6$ about	$[001]$
2	$0 \cdot 34$	$0-3$ about	$[001]$
3	$0 \cdot 13$	$0-4$ about	$[110]$

The multiple-film technique was applied, IlfordIndustrial G, Industrial B and Industrial C film being used. Corrections for absorption were calculated from Bond's table (Bond, 1959).

Fig. 1. Correction for extinction (see text). I_{1} and I_{2} are on the same relative scale.

By comparing the $|F|^{2}$-values of the reflexions from crystal I with those of corresponding reflexions from crystal 3, we found that the intensities obtained from crystal I showed strong extinction. These extinction errors could greatly be reduced by comparing, for each layer line about the c axis, the intensities I_{1} of the medium and strong reflexions from crystal 1 with
the intensities I_{2} of the reflexions from crystal 2. A plot of I_{2} / I_{1} versus I_{1} for the zero layer line is shown in Fig. 1. It is seen that the correction factor in the intensities I_{1} amounts to about 3 for the strongest reflexions $h k 0$. The extinction effect appeared to decrease rapidly for increasing values of l, and is vanishingly small for the reflexions $h k 3$. For 8 strong reflexions no reliable correction for extinction was obtained.

During the refinement 623 independent reflexions with reliable intensity were taken into account.

Refinement

The approximate structure is described by Ketelaar (1939). The two $\left(\mathrm{PNCl}_{2}\right)_{4}$ molecules in the unit cell lie on a two-fold special position with symmetry $\overline{4}$, so that the structure contains only one independent PNCl_{2} group. Starting from Ketelaar's final coordinates, we refined the structure in successive cycles of structure-factor calculations and difference Fourier syntheses. For P and Cl , the atomic scattering factors, calculated by Tomiie \& Stam (1958) and for N those calculated by Berghuis et al. (1955) were used. The scale factor was determined by comparing observed and calculated structure factors. The atomic shifts were calculated in the usual way (Cochran, 1951).

To obtain accurate values for the bond lengths and angles a certain amount of anisotropic refinement was necessary. We did not aim at a complete refinement of the thermal parameters, however. As no machine-program for the calculation of structure factors with anisotropic temperature factors was available, the structure factors were computed by substituting the anisotropically vibrating atoms by a number of fractional atoms (Vos \& Smits, 1961).

During the refinement of the [001] projection, the principal axes of vibration were assumed to coincide with the x and y axis, so that only the parameters B_{x} and B_{y} in the temperature factor $\exp -\left(B_{x} \xi^{2} / 4+B_{y} \eta^{2} / 4\right)$ (Kartha \& Ahmed, 1960) were determined. Corrections in B_{x} and B_{y} were first calculated with Hamilton's formula (1955), the parameters α being determined from the curvatures in $\ln \varrho$ at the atomic maxima in a Fourier synthesis of the calculated structure factors. When it appeared that the required corrections were underestimated in this way, further corrections were estimated by comparing successive difference Fourier syntheses.

From the [100] projection we only obtained approximate values for the z-coordinates, because of overlap.

As initial values for the three-dimensional refinement, the final parameters from the projections and estimated B_{z} values were taken. The directions of the principal axes of vibration x^{\prime}, y^{\prime} and z^{\prime}, were determined from the first three-dimensional difference map and were kept constant during the refinement. The

Fig. 2. Directions of x^{\prime}, y^{\prime} and z^{\prime} for $\mathrm{Cl}_{1}(a)$ and $\mathrm{Cl}_{2}(b)$.
main directions of vibration of P and N coincide with the crystal axes. For Cl_{1} and Cl_{2} the directions of x^{\prime}, y^{\prime} and z^{\prime} are shown in Figs. 2(a) and (b) respectively. Corrections in the temperature factor parameters were calculated by using Cochran's formula $4 \cdot 8$ (Cochran, 1951).

At the end of the refinement the residual R amounted to $6 \cdot 8 \%$. Only a rough estimate of the standard deviations in the coordinates could be made. As the final difference map still shows slight errors in the temperature-factor parameters, Cruickshank's formula (Cruickshank, 1949) will only give a lower limit for the possible errors. The estimated 'standard deviations' listed in Table 2 are twice the values calculated with Cruickshank's formula. The atomic shifts from the final difference Fourier map were small in comparison with these standard deviations.

Table 2. Final coordinates*

	x	S.d.	y	S.d.	z	S.d.
	0.2049	0.0002	0.0750	0.0002	0.8094	0.0004
P	0.0 .1119	0.0007	0.1556	0.0006	0.6706	0.0018
N	0.11003					
Cl_{1}	0.1477	0.0003	0.0500	0.0004	0.1225	0.0006
Cl_{2}	0.1924	0.0003	0.9064	0.0002	0.6784	0.0006

* The coordinates refer to the centre of symmetry as origin.

Table 3. Corrections of Ketelaar's final coordinates

	Δx	Δy	Δz
p	$-0.039 \AA$	$+0.016 \AA$	$-0.123 \AA$
N	-0.142	+0.115	+0.212
Cl_{1}	-0.003	-0.011	-0.104
Cl_{2}	-0.001	+0.010	-0.039

Table 4. Temperature factor parameters

	$B_{x^{\prime}}$	$B_{y^{\prime}}$	$B_{z^{\prime}}$
\mathbf{P}	$1.57 \AA^{2}$	$1.77 \AA^{2}$	$2.57 \AA^{2}$
N	1.99	1.94	2.74
Cl_{1}	2.71	5.21	2.21
Cl_{2}	4.09	1.71	4.01

The final coordinates are listed in Table 2 and are compared with Ketelaar's coordinates in Table 3. Table 4 shows the temperature factor parameters $B_{x^{\prime}}, B_{y^{\prime}}$ and $B_{z^{\prime}}$. The observed and calculated structure factors are listed in Table 5.

Table 5. Observed and calculated structure factors
In order to obtain F_{o} and F_{c} on the absolute scale, the values in the table must be multiplied by
The reflexions which could not be corrected for extinction are marked *

 \& O~N゙ニ

Discussion of the structure

The arrangement of the molecules is shown in Fig. 4 in Ketelaar's paper. The smallest intermolecular distances are those between chlorine atoms, the minimum distance, $3.68 \AA$, agreeing well with the sum of the Van der Waals radii, $3 \cdot 60 \AA$.

Fig. 3. Molecule of $\left(\mathrm{PNCl}_{2}\right)_{4}$.
The $\left(\mathrm{PNCl}_{2}\right)_{4}$ molecule, which is shown in Fig. 3, contains a fourfold inversion axis. The puckered eightmembered ring of alternating phosphorus and nitrogen atoms has a tub-like form. In Table 6 our intramolecular distances and angles are compared with those given by Ketelaar. No correction for thermal motion was made in calculating the atomic distances. The standard deviations are estimated from the standard deviations in the coordinates, listed in Table 2. The $\mathrm{P}-\mathrm{Cl}$ bond lengths are equal within experimental error. The average value, $1.989 \AA$, agrees with the $\mathrm{P}-\mathrm{Cl}$ bond lengths known from other structures, e.g. $2 \cdot 03 \pm 0 \cdot 02 \AA$ in $\mathrm{PCl}_{3}, \mathrm{PCl}_{2} \mathrm{~F}$ and PClF_{2} and $2 \cdot 00 \pm 0.02 \AA$ in $\mathrm{POCl}_{3}, \mathrm{POCl}_{2} \mathrm{~F}, \mathrm{POClF}_{2}$ and PSCl_{3} (Sutton, 1958).

Table 6. Intramolecular distances and bond angles

	Ketelaar et al. Distance	Refined value Distance	S.d.
P-N	1.66 A	$1 \cdot 57_{0} \AA$	$0.009 \AA$
$\mathrm{P}-\mathrm{N}^{\prime}$	$1 \cdot 69$	$1 \cdot 56{ }_{9}$	0.009
$\mathrm{P}-\mathrm{Cl}_{1}$	1.98	1.985	$0 \cdot 004$
$\mathrm{P}-\mathrm{Cl}_{2}$	$2 \cdot 02$	1.993	$0 \cdot 004$
$\mathrm{Cl}_{1} \cdots \mathrm{Cl}_{2}$	$3 \cdot 17$	3.109	$0 \cdot 005$
$\mathrm{P} \cdot \mathrm{P}^{\prime}$	$2 \cdot 93$	$2 \cdot 861$	0.003
$\mathrm{N} \cdot \cdots{ }^{\prime}$	$2 \cdot 85$	$2 \cdot 73$	0.01
$\mathrm{N} \cdot \mathrm{Cl} \mathrm{Cl}_{1}$	$3 \cdot 18$	2.953	$0 \cdot 009$
$\mathrm{N} \cdot \mathrm{Cl}_{2}$	$2 \cdot 71$	$2 \cdot 840$	0.009
$\mathrm{N}^{\prime} \cdots \mathrm{Cl}_{1}$	$2 \cdot 88$	$2 \cdot 838$	0.009
$\mathrm{N}^{\prime} \cdots \mathrm{Cl}_{2}$	3-14	$2 \cdot 914$	0.009
$\mathrm{Cl}_{1}{ }^{\prime} \cdots \mathrm{Cl}_{2}$		$4 \cdot 23$	$0 \cdot 005$
	Angle	Angle	
$\mathrm{Cl}_{1}-\mathrm{P}-\mathrm{Cl}_{2}$	105°	102.8°	$0 \cdot 2^{\circ}$
$\mathrm{N}-\mathrm{P}-\mathrm{N}$	117	121.2	$0 \cdot 5$
$\mathrm{P}-\mathrm{N}-\mathrm{P}$	123	$131 \cdot 3$	$0 \cdot 6$
$\mathrm{Cl}_{1}-\mathrm{P}-\mathrm{N}$		111.8	$0 \cdot 4$
$\mathrm{Cl}_{1}-\mathrm{P}-\mathrm{N}^{\prime}$		$105 \cdot 3$	0.4
$\mathrm{Cl}_{2}-\mathrm{P}-\mathrm{N}$		$105 \cdot 1$	$0 \cdot 4$
$\mathrm{Cl}_{2}-\mathrm{P}-\mathrm{N}^{\prime}$		$109 \cdot 2$	$0 \cdot 4$

The values found for the lengths of the two crystallographically non-equivalent $\mathrm{P}-\mathrm{N}$ bonds show that the P-N bonds in the eight-membered ring are essentially equal. The P-N bond length, $1.57 \AA$, is significantly smaller than the value, $1 \cdot 67 \AA$, reported by Ketelaar and is even smaller than the sum, $1 \cdot 60 \AA$, of the covalent radii for a double P-N bond (Pauling, 1945). Short $\mathrm{P}-\mathrm{N}$ bond lengths have also been found in other phosphonitrilic compounds, e.g. $1 \cdot 59 \AA$ in $\left[\mathrm{PN}\left(\mathrm{N} M e_{2}\right)_{2}\right]_{4}$ (Bullen, 1960), $1.53-1.61 \AA$ in $\left(\mathrm{PNCl}_{2}\right)_{3}$ (Wilson \& Carroll, 1960; Giglio, 1960) and $1.51 \AA$ in $\left(\mathrm{PNF}_{2}\right)_{4}$ (McGeachin \& Tromans, 1960). The phosphorus atom is four-coordinated. The bonds point to the corners of a distorted tetrahedron. The $\mathrm{N}-\mathrm{P}-\mathrm{N}$ bond angle is large in comparison with the tetrahedral value, $109 \cdot 5^{\circ}$. The $\mathrm{P}-\mathrm{N}-\mathrm{P}$ bond angle is larger than the angle between two p orbitals, 90°, or between two $s p^{2}$ hybrid orbitals, 120°.

Theoretical discussions of the electronic structure of the phosphonitrilic chlorides have been given recently (for a review see Paddock, 1960; Dewar et al., 1960). Craig (1958) pointed out that d orbitals may take part in the binding. Besides σ bonds, the phosphonitrilic chlorides will form π bonds due to the interaction between phosphorus $d-\pi$ and nitrogen $p-\pi$ orbitals.

Our values for the bond lengths and angles suggest that the σ bonds in $\left(\mathrm{PNCl}_{2}\right)_{4}$ are established by $s p^{3}$ hybrid orbitals of phosphorus and $s p^{2}$ hybrid orbitals of nitrogen. The relatively planar configuration of the eight-membered ring, corresponding to the large $\mathrm{P}-\mathrm{N}-\mathrm{P}$ and $\mathrm{N}-\mathrm{P}-\mathrm{N}$ bond angles, and the equal lengths of the $\mathrm{P}-\mathrm{N}$ bonds support the assumption of a delocalization of the $p-\pi$ and $d-\pi$ electrons. From our experimental evidence it cannot be concluded, however, whether this delocalization is complete (Craig, 1959) or restricted to a three-centre $\mathrm{P}-\mathrm{N}-\mathrm{P} \pi$ bond (Dewar, 1960).

The Fourier syntheses and structure factors were calculated on the digital computer ZEBRA, with programs devised by Dr D. W. Smits. Bond lengths and angles were calculated with a program devised by Dr D. Rogers. We wish to thank Prof. E. H. Wiebenga for his interest throughout the course of this investigation, and Dr D.W. Smits and Mr H. Schurer for operating the ZEBRA. The Netherlands Organization for the Advancement of Pure research (ZWO) supported this work indirectly.

References

Berghuis, J., Hafappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Bond, W. L. (1959). Acta Cryst. 12, 375.
Bullen, G. J. (1960). Proc. Chem. Soc., p. 425.
Cochran, W. (1951). Acta Cryst. 4, 408.

Craig, D. P. (1958). Special Publication, no. 12, p. 343. London: The Chemical Society.
Craig, D. P. (1959). J. Chem. Soc., p. 997.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Dewar, M. J. S., Lucken, E. A. C. \& Whitehead, M. A. (1960). J. Chem. Soc., p. 2423.

Giglio, E. (1960). Ric. Sci. 30, 721.
Hamilton, W. C. (1955). Acta Cryst. 8, 841.
Kartha, G. \& Ahmed, F. R. (1960). Acta Cryst. 13, 532.
Ketelaar, J. A. A. \& Vries, T. A. de (1939). Rec. Trav. Chim. Pays-Bas, 58, 1081.
Lund, L. G., Paddock, N. L., Proctor, J. E. \& Searle, H. T. (1960). J. Chem. Soc., p. 2542.

McGeachin, H. McD. \& Tromans, F. R. (1960). Chem. and Ind., p. 1131.
Paddock, N. L. (1960). Endeavour, 19, 134.
Pauling, L. (1945). The Nature of the Chemical Bond, Ithaca: Cornell University Press.
Sutton, L. E. (1958). Tables of Interatomic Distances and Configuration in Molecules and Ions. Spec. Publ. no. 11. London: The Chemical Society.

Tomite, Y. \& Stam, C. H. (1958). Acta Cryst. 11, 126. Vos, A. \& Smits, D. W. (1961). Acta Cryst. 14, 1299. Wiegers, G. A. \& Vos, A. (1961). Acta Cryst. 14, 562. Wilson, A. \& Caroll, D. F. (1960). J. Chem. Soc., p. 2548.

The Structure of the $\boldsymbol{\mu}$-Phase $\mathbf{C o}_{\mathbf{7}} \mathbf{M o}_{\mathbf{6}}$

By J. B. Forsyth and L. M. d'Alte da Veiga*
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 25 August 1961)

Abstract

The μ-phase structure of $\mathrm{Co}_{7} \mathrm{Mo}_{6}$ has been confirmed by making single-crystal measurements. The atomic parameters show some significant changes when compared with those in $\mu \mathrm{Fe}_{7} \mathrm{~W}_{6}$, and the interatomic distances in $\mathrm{Co}_{7} \mathrm{Mo}_{6}$ are compared with those in other transition-metal phases. The distribution of atoms in the available sites appears to be completely ordered.

1. Introduction

The cobalt-molybdenum system has been investigated by several workers. The phase diagram in the range $0-50 \mathrm{at} . \%$ Mo was determined by Raydt \& Tammann (1913), Takei (1928), Sykes \& Graff (1935) and Haschimoto (1937). Two intermediate phases were found in this range: $\mathrm{Co}_{3} \mathrm{Mo}$ at $25 \mathrm{at} . \% \mathrm{Mo}$ and $\mathrm{Co}_{7} \mathrm{Mo}_{6}$ at $46 \cdot 15$ at. $\%$ Mo. Takei detected the phase $\mathrm{Co}_{2} \mathrm{Mo}_{3}$ at $60 \mathrm{at} . \%$ Mo, which was later confirmed by Sykes \& Graff (1935) and Ham (1950). $\mathrm{Co}_{2} \mathrm{Mo}_{3}$ has a σ-phase structure (Summers-Smith, 1951; Goldschmidt, 1951).

Henglein \& Kohsok (1949) showed that the intermediate phase $\mathrm{Co}_{7} \mathrm{Mo}_{6}$ was isotypic with $\mathrm{Fe}_{7} \mathrm{~W}_{6}$ by comparison of their X-ray powder photographs. The structure of the latter phase had been determined by Westgren (1936) using Arnfelt's (1928) data.

The present work is concerned with the refinement of the structure of $\mathrm{Co}_{7} \mathrm{Mo}_{6}$.

2. Material

The crystal used in this work was prepared by heating pressed compacts of the two metal powders. The composition of the compacts was $58.25 \mathrm{wt} . \%$ Mo (i.e. $46 \cdot 15 \mathrm{at} . \% \mathrm{Mo}$) and each compact was melted in

[^0]an aluminium boat under $10^{-5} \mathrm{~mm} . \mathrm{Hg}$ pressure using an induction heater.

Some difficulty was experienced in finding a sufficiently large single crystal and three melts had to be prepared. A few crystals of reasonable size were obtained, the habit being plate-like, with the $c_{\text {hex }}$-axis perpendicular to the plate. X-ray examination showed that every crystal was twinned; however, one of these crystals was successfully used for the refinement of the structure.

3. Unit cell and space group

Accurate lattice parameters were determined by the method of Farquhar \& Lipson (1946). The values obtained are compared with those of Henglein \& Kohsok in Table 1.

Table 1. The lattice parameters of $\mathrm{Co}_{7} \mathrm{Mo}_{6}$

	Henglein \& Kohsok's values	
Present investigation	$58.4 \mathrm{wt} . \% \mathrm{Mo}$	Alloy at Co rich end of composition range
$a_{\text {hex }} \quad 4.762 \pm 0.001 \AA$	$4.767 \pm 0.005 \AA$	$4.725 \pm 0.05 \AA$
$c_{\text {hex }} 25.615 \pm 0.005$	25.65 ± 0.01	25.42 ± 0.02
$a_{\text {rb }} 8.970$	8.980	8.873
¢ $30^{\circ} 47^{\prime}$	$30^{\circ} 48^{\prime}$	$30^{\circ} 53^{\prime}$

Laue and Weissenberg photographs were consistent with the space group $R 32, R 3 m$ and $R \overline{3} m$. The last

[^0]: * On leave of absence from Centre of Studies of Nuclear Physics, Physics Laboratory of the University of Coimbra (Portugal).

